MATHEMATICS

MPC1

Unit Pure Core 1

Friday 9 January 20099.00 am to 10.30 am

For this paper you must have:

- an 8-page answer book
- the blue AQA booklet of formulae and statistical tables.

You must not use a calculator.

Time allowed: 1 hour 30 minutes

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Write the information required on the front of your answer book. The Examining Body for this paper is AQA. The Paper Reference is MPC1.
- Answer all questions.
- Show all necessary working; otherwise marks for method may be lost.
- The use of calculators (scientific and graphics) is not permitted.

Information

- The maximum mark for this paper is 75 .
- The marks for questions are shown in brackets.

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.

Answer all questions.

1 The points A and B have coordinates $(1,6)$ and $(5,-2)$ respectively. The mid-point of $A B$ is M.
(a) Find the coordinates of M.
(b) Find the gradient of $A B$, giving your answer in its simplest form.
(c) A straight line passes through M and is perpendicular to $A B$.
(i) Show that this line has equation $x-2 y+1=0$.
(ii) Given that this line passes through the point $(k, k+5)$, find the value of the constant k.

2 (a) Factorise $2 x^{2}-5 x+3$.
(b) Hence, or otherwise, solve the inequality $2 x^{2}-5 x+3<0$.

3 (a) Express $\frac{7+\sqrt{5}}{3+\sqrt{5}}$ in the form $m+n \sqrt{5}$, where m and n are integers.
(b) Express $\sqrt{45}+\frac{20}{\sqrt{5}}$ in the form $k \sqrt{5}$, where k is an integer.

4 (a) (i) Express $x^{2}+2 x+5$ in the form $(x+p)^{2}+q$, where p and q are integers.
(ii) Hence show that $x^{2}+2 x+5$ is always positive.
(b) A curve has equation $y=x^{2}+2 x+5$.
(i) Write down the coordinates of the minimum point of the curve.
(ii) Sketch the curve, showing the value of the intercept on the y-axis.
(c) Describe the geometrical transformation that maps the graph of $y=x^{2}$ onto the graph of $y=x^{2}+2 x+5$.

5 A model car moves so that its distance, x centimetres, from a fixed point O after time t seconds is given by

$$
x=\frac{1}{2} t^{4}-20 t^{2}+66 t, \quad 0 \leqslant t \leqslant 4
$$

(a) Find:
(i) $\frac{\mathrm{d} x}{\mathrm{~d} t}$;
(3 marks)
(ii) $\frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}}$.
(2 marks)
(b) Verify that x has a stationary value when $t=3$, and determine whether this stationary value is a maximum value or a minimum value.
(c) Find the rate of change of x with respect to t when $t=1$.
(d) Determine whether the distance of the car from O is increasing or decreasing at the instant when $t=2$.
(2 marks)

6 (a) The polynomial $\mathrm{p}(x)$ is given by $\mathrm{p}(x)=x^{3}+x-10$.
(i) Use the Factor Theorem to show that $x-2$ is a factor of $\mathrm{p}(x)$.
(2 marks)
(ii) Express $\mathrm{p}(x)$ in the form $(x-2)\left(x^{2}+a x+b\right)$, where a and b are constants.
(2 marks)
(b) The curve C with equation $y=x^{3}+x-10$, sketched below, crosses the x-axis at the point $Q(2,0)$.

(i) Find the gradient of the curve C at the point Q.
(ii) Hence find an equation of the tangent to the curve C at the point Q.
(iii) Find $\int\left(x^{3}+x-10\right) \mathrm{d} x$.
(iv) Hence find the area of the shaded region bounded by the curve C and the coordinate axes.

7 A circle with centre C has equation $x^{2}+y^{2}-6 x+10 y+9=0$.
(a) Express this equation in the form

$$
(x-a)^{2}+(y-b)^{2}=r^{2}
$$

(b) Write down:
(i) the coordinates of C;
(ii) the radius of the circle.
(c) The point D has coordinates $(7,-2)$.
(i) Verify that the point D lies on the circle.
(ii) Find an equation of the normal to the circle at the point D, giving your answer in the form $m x+n y=p$, where m, n and p are integers.
(d) (i) A line has equation $y=k x$. Show that the x-coordinates of any points of intersection of the line and the circle satisfy the equation

$$
\left(k^{2}+1\right) x^{2}+2(5 k-3) x+9=0
$$

(ii) Find the values of k for which the equation

$$
\left(k^{2}+1\right) x^{2}+2(5 k-3) x+9=0
$$

has equal roots.
(iii) Describe the geometrical relationship between the line and the circle when k takes either of the values found in part (d)(ii).

END OF QUESTIONS

